Bedienungsanleitung für den Radioteleskop Client und Simulator

Ing. Harald Chmela, BSc, MSc harald.chmela@univie.ac.at

v.4.3. 11.4.2025

Windows Installation

- Download der aktuellen Datei "radtel-x86_64-x.x.zip"über <u>https://radio.univie.ac.at/</u>
- Zip Datei entpacken
- Installer starten (msi Datei anklicken)
- Windows SmartScreen Meldung: Auf "More Info" klicken und Zertifikat hinzufügen

 Desktop Icon anklicken und starten nicht C:\Programme\radtel\bin\radtel.exe starten ! (Das Arbeitsverzeichnis, muss C:\Program Files\radtel\ sein !)

Installation des Simulators

- Download der HI-Daten "sky_vel.dat.zip" über <u>https://radio.univie.ac.at/</u>
- Zip Datei öffnen und sky_vel.dat in das Verzeichnis C:\Programme\radtel kopieren (nicht nach C:\Programme\radtel \bin\ !)
- Desktop Icon anklicken nicht C:\Programme\radtel\bin\radtelsrv.exe starten ! (Falsches Arbeitsverzeichnis)

Es wird ein simulierter Teleskop Server auf Port 1420 des lokalen Rechners zur Verfügung gestellt

Linux Installation allgemein

- Download der aktuellen "radtel-src-vx.x.zip" Datei über <u>https://radio.univie.ac.at/</u> oder git clone <u>https://github.com/aluntzer/radtel.git</u>
- Falls notwendig Pakete libtool, libglib2.0-dev, libfftw3-dev, libgtk-3-dev, libgstreamer1.0-dev und libgstreamer-plugins-base1.0-dev installieren
- Im Verzeichnis /radtel/ ./autogen.sh ./configure make sudo make install
- Client starten mit radtel
- Download der HI-Daten "sky_vel.dat.zip" über https://radio.univie.ac.at/
- Entpacken in beliebiges Verzeichnis
- Simulator mit radtelsrv im selben Verzeichnis starten

Für Mac OSX (anspruchsvoll)

- Anleitung <u>HOWTO_OSX.txt</u> unter dem Link <u>https://radio.univie.ac.at/</u>
- Download der HI-Daten "sky_vel.dat.zip" über <u>https://radio.univie.ac.at/</u>
- Entpacken in beliebiges Verzeichnis
- Simulator mit radtelsrv im selben Verzeichnis starten
- Bei Problemen mit der Installation der Software wenden Sie sich bitte an: <u>armin.luntzer@univie.ac.at</u>

Fenster Bedienung

- Die Schriftart und Schriftgröße kann eingestellt werden,
- Tabs können einzeln oder gesamt abgedockt werden
- Fenster and ocken

Statusleiste kann versteckt werden –> Größeres Plotfenster Statusmeldungen: Z.B. aktive Verbindung zum Server

Webcam im Client

Achtung bei Datengebühren, hat eine sehr hohe Datenrate !

	180°	00'	00.00"	1419.35 MHz	U	1.43s
	45°	30'	00.00"	1419.65 MHz	J	0.86s
	03h	31m	09.00s			
Declination	03°	43'	47.00"			
Galactic Latitude	- 40	° 38	' 33.00"			
Galactic Longitude	180°	34'	45.00"			

Benutzerverwaltung

- Settings
- Beliebigen Benutzername eingeben
- Control Passwort: "radtel"
- Steuerkontrolle übernehmen Achtung auf laufende Beobachtungen !
- Ohne Passwort wird die Steuerkontrolle wieder abgegeben
- 6. Nach 20min ohne Aktivität Verlust der Steuerkontrolle

Gelb: Benutzer mit Steuerkontrolle

 Grün: Benutzer ohne Steuerkontrolle

Meldung des Tages

Rot: Administrator

Client mit Simulator verbinden

	*	•	×	
Host	٥	calhost		
Port		1420		
Font	Sans Normal	10		
	Harald	Win10		
Control Password	•	••••		
Request Control	ڻ			
Reconnect	S			

- 1. Simulator starten (Desktop Icon)
- 2. Settings
- 3. Host: "localhost"
- 4. Port: 1420
- 5. Reconnect

Client mit dem Teleskop verbinden

- 1. Settings
- 2. Host: "radtel.astro.univie.ac.at"
- 3. Control Passwort: "radtel"
- 4. Port: 1420
- 5. Reconnect

Bedienung des Simulators

Simulation					
Beam [deg]	0.50		+		
TSYS [K]	100	—	+		
Sigma	12.0	—	+		
Eff.	0.6	—	+		
LAT [deg]	48.23	—	+		
LON [deg]	-16.34	—	+		
Rate [Hz]	1.0	—	+		
Sun [SFU]	48.0	—	+		
Hot Load [K]	290.0	—	+		
Noise Fig. [dB]	0.1		+		

- Beambreite in Grad (Auflösungsvermögen)
- Systemtemperatur (Grundrauschen)
- Sigma: Streubreite des Rauschens
- Eff: Apertureffizienz (Signalstärke) Wirkungsgrad der Antenne
- Geographischer Breitengrad des Teleskops
- Geographischer Längengrad des Teleskops Verwendung zur Zeiteinstellung
- Zeitintervall für Spektraldaten
- Intensität der Sonne in Solar Flux Units Mond ist immer sichtbar
- Temperatur der Kalibrierquelle

Die Einstellungen werden mit <Enter> oder unmittelbar nach "+" und "-" übernommen

Simulator Daten

- HI Spektralbereich VLSR: -400km/s bis +400km/s Quelle: <u>www.astro.uni-bonn.de/hisurvey/AllSky_profiles</u>
- Nord- und Südhimmel in galaktischen Koordinaten
- Mond und Sonne mit einstellbarer Intensität (SFU)
- Darstellung der HI Intensität in der Farbe

Bedienung Sky View

- Rechtsklick + Maus ziehen = Zeitoffset einstellen
- STRG + Linksklick = Teleskop auf Position bewegen
- STRG + Linksklick auf Objekt = Objekt anfahren + tracken
- Linksklick (ohne Objekt) = Tracking deaktivieren

Teleskop steuern

- "Get Coordinates" fragt aktuelle Position ab 1.
- Koordinatensystem wählen 2.
- 3. Position eingeben
- "Go to Coordinates" 4. bewegt das Teleskop
- Teleskop stoppen
- Parkposition anfahren nur bei Schlechtwetter
- Kalibrierung nur bei Positionsfehlern
- Tracking ein/aus
- Anzeige der Fahrzeit

Spektrometer steuern

- 1. "Get Configuration" fragt aktuelle Einstellungen ab
- 2. Referenzfrequenz einstellen (HI oder OH) dies ist nicht die Empfangsfrequenz !
- 3. Eingabeform wählen
- 4. Frequenz eingeben

Für die Sonne

Center: 1415MHz, Span: 0,34MHz Für die Milchstraße Center: 1420,4MHz, Span: 1,5MHz

- 5. Auflösung 32 Bins und 128 Averages
- 6. "Set Configuration"
- Frequenz wird in Blickrichtung um VLSR korrigiert
- Spektrometer ein/aus !

Bedienung Plot Fenster

- Drag = Zoom Box
- STRG+Drag = Gauss Fit Box
- U = Fit Box aus
- SHIFT+Drag = Verschieben
- SCROLL = 2-Achsen Zoom
- SHIFT+SCROLL = Y-Achsen Zoom
- STRG+SCROLL = X-Achsen Zoom
- A = Autoscale
- ALT+Klick = Center Frequenz einstellen
- Rechtsklick = Daten Exportieren, Importieren
 Plots löschen, Farbe und Punkte einstellen,
 Cuts einstellen um Störungen abzuschneiden

Fitbox (gelb) Fitlinie (rot)

GraphsAutorangePlotAutorangeImport DataRange ControlsExport DataBackground ColourExport as PDFAxes ColourImport Clear PlotClear Plot

Beobachtungsprogramme

<u>**Cross Scan:**</u> Bewegt das Teleskop in Azimut und Elevation über die aktuelle Position und misst das Kontinuum.

<u>Galactic Plane Scan</u>: Bewegt das Teleskop entlang der galaktischen Ebene und zeichnet das Spektrum zu jeder Position auf.

<u>N-Point Map</u>: Erzeugt ein Bild in galaktischen Koordinaten.

Azimuth Elevation Scan: Erzeugt ein Bild der Umgebung im Horizontsystem.

Axis Scan: Zeichnet das Spektrum für verschiedene Azimut Positionen auf.

Beam Switching: Misst das Spektrum auf dem Objekt und auf zwei Hintergrundpositionen und subtrahiert den Hintergrund vom Objekt.

Messung der Beambreite

VLSR Profil der Milchstraße

- 1. Spektrometer auf Center VLSR=0km/s und Span auf 300km/s stellen
- 2. Doppler Tracking aktivieren
- 3. Aus der Sky View mit dem Cursor Readout den sichtbaren Bereich der Milchstraße in galaktischen Koordinaten ablesen
- 4. Galactic Plane Scan starten und sichtbare Koordinaten eingeben.

Erstellen eines Bildes

- 1. Spektrometer auf die Linienbreite des Objekts einstellen
- 2. N-Point Map Scan wählen und Koordinaten einstellen

